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Adaptive Finite Element Methods with Convergence
Rates *

Peter Binev, Wolfgang Dahmen, Ron DeVore

Abstract

Adaptive Finite Element Methods for numerically solving elliptic equations are
used often in practice. Only recently [12], [17] have these methods been shown
to converge. However, this convergence analysis says nothing about the rates of
convergence of these methods and therefore does, in principle, not guarantee yet
any numerical advantages of adaptive strategies versus non-adaptive strategies. The
present paper modifies the adaptive method of Morin, Nochetto, and Siebert [17]
for solving the Laplace equation with piecewise linear elements on domains in IR?
by adding a coarsening step and proves that this new method has certain optimal
convergence rates in the energy norm (which is equivalent to the H' norm). Namely,
it is shown that whenever s > 0 and the solution w is such that for each n > 1, it can
be approximated to accuracy O(n~*) in the energy norm by a continuous, piecewise
linear function on a triangulation with n cells (using complete knowledge of u), then
the adaptive algorithm constructs an approximation of the same type with the same
asymptotic accuracy while using only information gained during the computational
process. Moreover, the number of arithmetic computations in the proposed method
is also of order O(n) for each n > 1. The construction and analysis of this adaptive
method relies on the theory of nonlinear approximation.

Key Words: elliptic equations, finite element methods, adaptive refinements, rates of
convergence, nonlinear approximation.

1 Introduction

Adaptive methods are frequently used to numerically compute solutions to elliptic equa-
tions. While these methods have been shown to be very successful computationally, the
theory describing the advantages of such methods over their non-adaptive counterparts
is still not complete. For example, only recently [12], [17] have there even been proofs of
convergence of such methods. These proofs of convergence still do not prove any guar-
anteed advantage of these adaptive methods since there is no analysis of their rate of
convergence in terms of the number of degrees of freedom or the number of computations.
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the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation Grants
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merical Simulation” funded by the European Commission and the Alexander von Humboldt Foundation.




Recently, an analysis of rates of convergence for wavelet based adaptive methods was
given in [6],[7]. These papers derive an adaptive wavelet based algorithm for solving
elliptic problems and show that this algorithm has optimal efficiency in the sense that if
the solution u can be approximated (using complete knowledge of u) in the energy norm
by an n-term wavelet expansion to accuracy O(n~*), n — oo, then the adaptive method
will do the same using only knowledge of u gained through the adaptive iteration. Wavelet
methods vary from their FEM counterparts in that they can be viewed as solving linear
systems that are finite sections of one fixed infinite dimensional matrix problem whose
solution gives the wavelet coefficients of u.

The theoretical foundation of Adaptive Finite Element Methods (AFEM) is less sat-
isfying. There is no known algorithm with a proven rate of convergence save for the
univariate case [4]. The purpose of the present paper is to give an AFEM and prove
convergence rates for this method which are the analogue of the wavelet case. Our al-
gorithm is not much different from existing adaptive methods based on bulk chasing of
a posteriori error estimators. The one main difference is the utilization of a coarsening
strategy. We should mention that coarsening also played an important role in the analysis
of adaptive wavelet methods. However, in the practical implementation of the adaptive
wavelet methods, for many problems, coarsening is not needed. The same may be the
case for AFEM.

We primarily view the present paper as a contribution to the theoretical analysis of
AFEM rather than the construction of an adaptive method that outperforms other adap-
tive methods in practice. In particular, we wish to clarify whether a-posteriori information
can lead to an adaptive algorithm that exhibits asymptotically optimal performance. In
spite of the theoretical emphasis it should not be excluded that some of the ideas of the
present paper may be useful in practice. One of these tools is the theory of nonlinear
approximation by piecewise polynomials. Since adaptive methods are a form of nonlin-
ear approximation, this theory will on the one hand help us to provide a benchmark for
measuring the success of adaptive methods, and on the other hand, provide an effective
implementation for the coarsening (see §4.5).

Adaptive Finite Element Methods have several complications that make their analysis
more cumbersome. These include the need for graded meshes, the problem of hanging
nodes, and the analysis of a-posteriori error estimators. If not for these complications, the
analysis in this paper would be considerably simplified. In order to present the ideas of
this paper in their simplest form, we shall try to minimize these obstacles. In particular,
we shall restrict ourselves to the Poisson problem

—Au=f in Q wu=0 on 01, (1.1)

where € is a polygonal domain in JR* and 09 is its boundary. We shall also consider
only approximations of the solution u by piecewise linear elements using a very specific
adaptive refinement strategy (called newest vertex bisection) well-known in the FEM
literature. In this way, the essentials of our arguments will be clear and we can also call
on several known results concerning a-posteriori error estimates that can be found in the
literature.

We conclude this introduction by briefly describing the structure of this paper. In
§2 we discuss the general form of adaptive Finite Element Methods which is marking,



subdivision, and completion (to remove hanging nodes). We then consider in detail the
structure of subdivision using newest vertex bisection. We shall introduce a simple la-
belling for edges that will facilitate the analysis of this type of subdivision. The main
result of this section is Theorem 2.4 which bounds the number of cells in the completion
process by the number of marked cells. This bound is vital in proving optimal convergence
rates. §3 recalls Galerkin approximations.

In §4 we study adaptive approximation by piecewise linear functions on adaptively
generated triangulations. The spirit of this section is to understand how to construct
good adaptive approximations to a known function w. In particular, we introduce the
algorithm of [2] which will be used heavily in our adaptive Finite Element Algorithm for
solving (1.1). Namely, it is used to approximate the right hand side f (see §4.4) and
for our coarsening strategy (see §4.5). We also discuss in this section what are optimal
approximation rates to a known function. This will provide a benchmark for our analysis
of adaptive Finite Element algorithms.

In §5, we recall the adaptive FEM method in [17] (we call it the MINS algorithm), and
record some of the proven facts about this method that will be used in the present paper.
This includes their introduction of local a-posteriori error estimators and their analysis
of how these estimators can be used to bound global errors. In §6, we make some minor
modifications of the MINS algorithm described in §5.

In §7, we describe the main ingredients of our new adaptive algorithm. We show
its optimal rates of convergence in §8. We conclude the paper with an appendix which
discusses the smoothness conditions that govern rates of convergence by adaptive methods.
These results are not important for the analysis in the present paper but may be of interest
to the reader.

2 Newest vertex bisection and completion

This section has three purposes. The first is to set forward some of the notation we shall
use in this paper. The second is to introduce the main form of adaptive Finite Element
Methods which is marking, subdividing, and completing. The third is to introduce and
analyze the particular form of subdivision we shall use in this paper, the so called newest
vertex bisection method.

Let © be a polygonal domain in IR*. We shall use P to denote a partition of §
into triangular cells A. This means that 2 = UacpA and any two A, A’ € P satisfy
meas(ANA') = 0 where here and later in this paper meas denotes the Euclidean measure
in IR*. Given such a partition, we let Sp denote the space of continuous, piecewise linear
functions subordinate to P which vanish on 0€2. A function S is in Sp if and only if S
is a linear function on each A € P, S is continuous on 2, and S vanishes on 0%, i.e.
Sp C H& (Q)

We denote by Ep the set of edges of P and by Ep the set of interior edges. Thus,
E € Ep means that E is an edge of some A € P and that the interior of E is in the
interior of €2. All other edges are called boundary edges. We also denote by Vp the set of
all vertices v of P and by Vp the set of interior vertices. Thus, v € Vp means that v is
a vertex of one of the A € P and v is in the interior of €2. All other vertices are called



boundary vertices.

There are two special conditions that we shall impose on a partition P that are im-
portant in Finite Element constructions. First, we say that a partition satisfies a minimal
angle condition if for each A € P all of its angles are > ag for some positive number ag.
Second, we shall require a partition P to be conforming which means that the intersec-
tion of any two cells is either empty or a common edge or a common vertex. A family of
partitions whose elements are all conforming and which satisfy a minimal angle condition
with respect to a common constant ay > 0, is called admissible.

The uniform minimal angle condition implies that for each cell A in any partition
P from an admissible family P, the ratio of the radii of the smallest circumscribed and
the largest inscribed circle of A is uniformly bounded independent of A and P. This
is sometimes referred to as local quasi-uniformity or shape reqularity. In particular, this
implies the existence of a constant C' = C (P) such that

1 < diam (A)?/|A| < C forall Aec P, PeP, (2.1)

where |A| = meas(A) denotes the Lebesgue measure of A. Moreover, there exists a
constant Gy = Go(P) such that for any two cells A, A" € P, for which AN A’ #£ (), we
have

diam(A) < Gy diam(A”). (2.2)

Locally quasi-uniform partitions allow one to control the global error in approximating a
function by local errors. Typical estimates in FEM depend on ay and deteriorate if ag is
small.

Conformity favors common finite element data structures by conveniently relating
local and global stiffness matrices since global basis functions are composed of the local
shape functions on each element in a simple way. In our specific context the global basis
functions will be the Courant “hat functions” (nodal functions) ¢,, v € Vp. The function
¢, is the unique element in Sp which is one at v and is zero at all other vertices in Vp.
The nodal basis functions are locally supported on the union of all triangles which share
v as a vertex. Moreover, one can construct locally supported dual functionals with the
same supports consisting of (discontinuous) piecewise linear functions thereby giving rise
to local linear projectors on Sp that are bounded in H*(2) for s < 1 (in fact even beyond
1). Again, it is important for estimating errors that for any partition P from an admissible
family, each basis function is overlapped by a uniformly bounded number of other basis
functions since the wvalence of the vertices, i.e. the number of edges emanating from a
given vertex, remains uniformly bounded.

The adaptive procedures we shall consider in this paper will generate a family of
partitions which is admissible.

A typical AFEM generates a sequence of partition Py, P,..., P, by using rules for
subdividing triangles. Given the partition Py, the algorithm marks certain of the trian-
gular cells A € P, for subdivision. We shall denote by M, the collection of marked cells.
These marked cells are subdivided using certain subdivision rules. This process, however,
creates hanging nodes. We say that v € Vp is a hanging node for A € P if v appears in
the interior of one of the sides of A. Since hanging nodes obviously violate conformity,
in a second step a certain collection M) of additional cells are subdivided in order to



guarantee that the resulting partition Py, is admissible. The partition P, is the final
admissible partition associated with this application of the adaptive algorithm.

2.1 Newest vertex bisection

We shall restrict ourselves in this paper to a very specific method of subdivision known as
newest vertex bisection. We shall call on certain properties of this method of subdivision
in what follows. We could not find some of these properties (or proofs of these properties)
in the FEM literature and therefore our discussion and development of newest vertex
bisection will be somewhat lengthy. The book of Verfiirth [22] and the research article of
Mitchell [16] describe this subdivision method and give some of its properties.

Given an initial partition Py of €2, to each A € P,, we assign exactly one of its vertices
v(A) as the newest vertez for that cell. This initial labelling can be made in an arbitrary
way. The edge in A opposite to v(A) will be denoted by E(A). In Figure 1 the newest
vertex assigned in any triangle of Py is indicated by an arrow pointing to E(A).

Figure 1: Assignment of newest vertices in P,

Each triangular cell that arises in the adaptive process will also have exactly one
of its vertices designated as a newest vertex. If this cell is to be subdivided then the
subdivision is a simple bisection done by connecting the newest vertex and the side E(A)
opposite. Thus the cell produces two new cells and their newest vertex (assigned to each
new triangular cell) is by definition the midpoint of E(A).

The partitions which arise when using newest vertex bisection satisfy a uniform mini-
mal angle condition. This is established by showing that all triangles that arise in newest
vertex bisection can be classified into a set of similarity classes depending only on the
initial partition Py (see Mitchell [16]). Also note that if a partition P is created by a
sequence of newest vertex bisections and if P has no hanging nodes, then it is conform-
ing. Thus, it is admissible. We shall show in the next subsection how any given partition
generated by newest vertex bisection can be completed to a partition with no hanging
nodes by subdividing certain other triangular cells. This process is called completion.
Furthermore, we shall bound the number of additional subdivisions necessary to remove
hanging nodes. But first we want to examine another important property of newest vertex
bisection which is its tree structure.



We can represent newest vertex bisection subdivision by an infinite binary tree T
(which we call the master tree). The master tree T, consists of all triangular cells which
can be obtained by a sequence of subdivisions. The roots of the master tree are the
triangular cells in Py. When a cell A is subdivided, it produces two new cells which are
called the children of A and A is their parent. It is very important to note that, no matter
how a cell arises in a subdivision process, its associated newest vertex is unique and only
depends on the initial assignment of newest vertices in F,. This means that the children of
A are uniquely determined and do not depend on how A arose in the subdivision process,
i.e., it does not depend on the preceding sequence of subdivisions. The reason for this is
that any subdivision only assigns newest vertices for the new triangular cells produced by
the subdivision and does not alter any previous assignment. It follows that 7T is unique
and does not depend at all on the order of subdivisions.

The generation of a triangular cell A is the number g(A) of ancestors it has in the
master tree. Thus cells in P, have generation 0, their children have generation 1 and so
on. The generation of a cell is also the number of subdivisions necessary to create this
cell from its corresponding root cell in F.

A subtree T C T, is a collection of triangular cells A € T, with the following two
properties: (i) whenever A € T then its sibling is also in the tree; (ii) when A C A’ are
both in the tree then each triangular cell A e T, with A c Ac AisalsoinT. The
roots of T' are all the cells A € T whose parents are not in 7. We say that 7' is proper if
it has the same roots as T, i.e., it contains all A € F,.

If T C T, is a finite subtree, we say A € T is a leaf of T if T' contains none of the
children of A. We denote by £(T') the collection of all leaves of T'.

For a proper subtree T', we define N(T') to be the number of subdivisions made to
produce T'.

Any partition P = P, which is obtained by the application of an adaptive procedure
based on newest vertex bisection (such as the algorithms we consider in this paper) can
be associated to a proper subtree T' = T'(P) of T, consisting of all triangular cells that
were created during the algorithm, i.e. all of the cells in Py,..., P,. The set of leaves
L(T) form the final partition P = P,.

We shall say that 7' = T'(P) is admissible if P is admissible. We denote the class of all
proper trees by 7 and all admissible trees by 7%. We also let 7, be the set of all proper
trees T' with N(7T') = n and by 7,* the corresponding class of admissible trees from 7,. We
denote by P the class of all partitions P that can be generated by newest vertex bisection
and by P® the set of all admissible partitions. Similarly, P, and P2 are the subclasses
of those partitions that are obtained from P, by using n subdivisions. There is a precise
identification between P, and 7,. Any P € P, can be given by a tree, i.e. P = P(T) for
some T € T,. Conversely any T € T, determines a P = P(T) in P,. The same can be
said about admissible partitions and trees.

2.2 Completion of subdivision

The adaptive algorithms we consider in this paper will be of the following type. We begin
with Py and mark certain cells in P, for subdivision. After doing these subdivisions we
arrive at the partition P. This partition is not necessarily admissible and so we shall



make some additional subdivisions which will complete P| to an admissible partition P;.
We then repeat this process of marking and completing. It will be important for us to
see that the completion process does not seriously inflate the number of triangular cells
in P,. We have not found any result in the literature saying that the overall number
of triangles created through completion always stays proportional to the number of cells
marked throughout the refinement process. To establish this will be a bit technical and
will be the subject of this subsection.

Suppose that P is an admissible partition with #(P) > 2 (the case #(P) = 2 is trivial
in what follows). To each A € P, we associate a triangular cell F(A) € P as follows. Let
v(A) be the newest vertex of A and E(A) the edge of A opposite to v(A). If E(A) is
a boundary edge then we define F/(A) = (). Otherwise, there is a unique triangular cell
A’ # A which has E(A) as one of its edges and we define F(A) = A’. One can visualize
the mapping A — F(A) as a flow determined by the vector which serves to bisect A in
the subdivision process.

By a chain C'(A) (with starting cell A) in P, we mean a sequence A, F(A), ..., F™(A)

with no repetition of the cells in this chain and with F™*1(A) = F*(A), for some k €
{0,...,m —1} or F™(A) = 0.
Remark: We shall see below that by starting with a particular assignment of newest
vertices in Py, for any of the subsequent partitions P = Py, the only way F™(A) =
F™(A) is for n to be equal to m — 1. We shall therefore assume this property in going
further.

The completion of a chain C'(A) is a collection C'(A) of cells produced by two sets
of subdivisions. In the first set, each cell A’ = F¥(A) in this chain is subdivided using
the newest vertex bisection (i.e. the insertion of the line segment connecting v(A’) to the
midpoint on E(A’)). This subdivision of A’ produces two new cells (the children of A').

After this first set of subdivisions has been completed, there will generally be cells with
hanging nodes. The second part of the subdivision process is to subdivide each of the
children that have a hanging node. Hanging nodes occur inside a cell A’ = F¥(A), when
E(F*1(A)) # E(F*(A)). In this case the new edge we need to add in F*(A) is the one
connecting the midpoints of these two edges. This part of the subdivision process removes
all remaining hanging nodes. By the above remarks, this has the effect of subdividing
(into two grandchildren) the child of F*(A), k = 1,...,m/,which has E(F*~(A)) as an
edge. Here m’ = m — 1, when F™'(A) = F™1(A), and m' = m, when F™1(A) = 0.

We shall make some further observations about the structure of C(A) and the resulting
flow structure. For this purpose, we shall introduce a way of labelling all edges that arise
in the subdivision process.

We shall label the edges in the partitions Py, Py, ..., P, by nonnegative integers. This
labelling will give us a simple way to keep track of the subdivision and completion process.
Given any triangular cell A in one of these partitions, the sides of A will be labelled by
(14 1,i+ 1,4) where i = g(A) is the nonnegative integer that represents the generation
of A (i.e. how many subdivisions of a cell in Py were needed to create A). The labelling
will be such that the lowest labelled side will be E(A), i.e. the side opposite the newest
vertex of A. At the outset, it may appear that the labelling of a side will depend on the
triangle A and so a side will get two labels depending on which triangle we view it to
be in. However, as we shall see, for admissible partitions the labelling of an edge can be



independent of the triangle to which it belongs provided we start with a suitable labelling
of Po.

To start the labelling process, we describe how to label the edges in P, see Figure
2 which displays a labelling which is consistent with the assignment of newest vertices
shown in Figure 1.

1

Figure 2: Assignment of newest vertices in P,

We begin with the following lemma.

Lemma 2.1 For any initial partition Py there is a labelling of the edges in Py such that
each edge is given a label of either 0 or 1 and whenever a triangle A € Py then exactly
two of its edges are labelled with a 1 and the other edge is labelled with a 0.

Proof: We shall show the existence of such a labelling by using the theory of matchings
in cubic graphs. A cubic graph is one in which every vertex of the graph has exactly
three edges. Since the labelling refers only to the combinatorial structure we can map
the domain € covered by Py homeomorphically onto a portion of the sphere in IR* which
induces a triangulation of that portion of the sphere. Let P, denote any fixed completion
of P, to a triangulation of the whole sphere and consider the dual graph of P,. This is the
graph whose vertices are the triangles of P,. Two vertices in this dual graph are connected
if the corresponding triangles share an edge. This graph is a cubic graph.

Given any graph, a set of edges £ of the graph such that no two edges from £ share
the same vertex is called a matching. The matching is perfect if all vertices are covered.
The existence of perfect matchings in cubic graphs has been established by Petersen [20],
see also Theorem 3.4.1 on page 110 in [15]. Given such a perfect matching £ for the cubic
graph generated by P, (as described above), we assign a label 0 to each edge of Py which
corresponds to an edge in £. Every other edge of Py is assigned the label 1. By Petersen’s
theorem, for each triangle A in ]50, exactly one of the edges of A will be labelled 0 and
the other two will be labelled 1. Clearly this labelling of Py induces a labelling with the
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desired property also for any subset of ]50 and, in particular, also for Py which establishes
the claimed existence. ©

There remains the problem of constructing a practical scheme for giving a labelling
of the form expressed in Lemma 2.1. One way is to employ methods from combinatorial
optimization. By the above proof, it suffices to construct a maximal matching for the
dual graph of Py. Such schemes can be found, for instance, in [15, p. 238, Theorem 10.6].

To explain a simple alternative let us consider yet another interpretation of the la-
belling in Lemma 2.1. For any collection A of triangular cells in Py we denote by €24 their
union. Suppose we could find a set @) C Py with the following properties:

(i) All triangles in Py \ @ have at least one edge on the boundary of (.
(ii) The domain €2 can be decomposed into an essentially disjoint union of quadrilaterals
formed by pairs of adjacent triangles from Q).

Given such a collection @), we can assign the following labels to the edges of Fy. For
each pair of triangles from () whose union forms one of the quadrilaterals, we assign 0 to
their common edge and 1 to all other edges. By (i) we have missed at most edges on the
boundary IT' of 2. If such an edge E belongs to a triangle with two interior edges, they
must have the label 1, so we assign the label 0 to E. If the edge belongs to a triangle
with two edges on the boundary we label one by 0 and the other one by 1 to obtain the
type of labelling asserted by the lemma.

Figure 3: Refinement for labelling

So the labelling problem now reduces to finding a collection @) in Py satisfying (i) and
(ii). Instead of finding such a set @ for Py whose existence is guaranteed by Petersen’s
Theorem, we shall mention a simple way of constructing such a @) for a refinement of F,.
In fact, we can subdivide each A in P into four triangles such that the new partition B}
consisting of these new triangles satisfies (i) and (ii) for Q = P;. Indeed, given A € P,
we use a bisection to divide A into two triangles (the side chosen for this bisection can be
chosen arbitrarily). Each of the two resulting triangles (they will be our ”quadrilaterals”
from Qg) are then again subdivided by bisecting the side the triangle has in common with
A The last two bisecting edges receive labels 0, and all the other edges resulting from this
procedure receive labels 1. If this is done for each A € P, the resulting partition P} has
no hanging nodes since all the edges of Py are divided into two. Thus Pj can be labelled

9



as described above, see Figure 3.

Given the labelling of sides in Py by Lemma 2.1, we define the newest vertex of a
triangular cell A € Py to be the vertex opposite the side which is labelled by 0. In going
further, we shall always assume that the initial labelling of newest vertices in Py has been
done in accordance with Lemma 2.1. Notice that this means that any chain in P, has at
most two cells and that the subdivision of these cells gives an admissible partition (i.e.
there is no need to go to the second subdivisions which generated grandchildren). This
is illustrated in Figure 4 where one triangle (from P, which is labelled with an “x“) has
been marked for subdivision.

Figure 4: Assignment of newest vertices in P,

We now give a rule to label any edges that arise from the subdivision-completion
process. There will be two main properties of this labelling. The first is that each
triangular cell will have sides with labels (i,i,7 — 1) for some positive integer i. The
second is that the newest vertex for this cell will be the vertex opposite the side with
lowest label. Certainly the edges in F, have such a labelling as we have just shown.

Suppose that we have such a labelling for the edges in P, and let us describe how to
label the edges in Py.1. Suppose that a triangular cell A € Py has sides which have been
labelled (4,4, — 1) and the newest vertex for this cell is the one opposite the side labelled
i—1. When this cell is subdivided (using newest vertex bisection) the side labelled i —1 is
bisected and we label each of the two new sides ¢ + 1. We also label the bisector by ¢ 4 1,
i.e. the new edge connecting the newest vertex of A with the midpoint of the edge E(A)
labelled by ¢ — 1. Thus each new triangle now has sides labelled (7,7 + 1,7 + 1) with the
newest vertex opposite the side with the lowest label. We note the important fact that if
a cell has label (i + 1,i 4+ 1,4) then it is of generation ¢ (i.e. it has been obtained from a
cell in Py by i subdivisions). Therefore, specifying that the generation of the cell is i is
the same as specifying that its label is (i + 1,7 + 1,4). Figure 5 gives an example for the
completion process which corresponds to marking one of the triangles of P, in Figure 4

10



which is labelled with an “x” in Figure 5.

Figure 5: Assignment of newest vertices in P,

Lemma 2.2 Suppose Py is an arbitrary partition and its edges and newest vertices are
labelled in accordance with Lemma 2.1. Suppose that Py, ..., P, are partitions which are
generated from Py using the marking, subdivision, and completion process. We label edges
i Py, ..., P, as described above. Then there holds for each k =0,1,... n:

(i) each edge in Py has a unique label independent of the two triangles which share this
edge.

(ii) If A is a triangular cell in Py of generation g(A) =i, i.e. the edge with label i is the
side shared by A and F(A), then g(F(A)) € {i,i —1}. If g(F(A)) = i the flow ends at
F(A).

(i1i) For any A € Py of generation g(A) = i, the cells in its chain

C(A) ={A,F(A),...,F™(A)} have the property that g(F'(A)) =i—35,7=0,...,m—1,
and the terminating cell F™(A) for this chain is either of generation i —m+ 1 or it is a
boundary cell with lowest labelled edge an edge of the boundary.

Proof: This is proved by induction on k. All three assertions are clear for £ = 0 by the
construction of the labelling of F, given by Lemma 2.1. Suppose that we have proven the
lemma for P,_; and consider P.

Proof of (i): Note that the above rules leave the labels of all those edges unchanged that
are not effected by subdivisions. Any edge E in P, which was not in P, _; was obtained
in one of two ways. The first is that it is a new edge which was added as a bisector in the
subdivision-completion process. In this case there is nothing to prove about its labelling
being unique. The second possibility is that the new edge F was obtained by bisecting
an edge E', say with label 4, from Pj,_;. Let A and A’ be the two triangular cells in P,_;
which shared E’. For one of these triangular cells, which we can assume is A’, we have
E' = E(A"). So A" had label (i + 1,7+ 1,¢) and therefore viewed from A’; E is assigned
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the label 7 + 2. By our induction assumption, as an edge of A, E’ is also labelled by 7, so
that A has either the label (7,7 4+ 1,44 1) or (4,7,7 — 1). In the first case the situation is
symmetric to A’ since E' = E(A) is bisected and E as one of the halves is labelled 7 + 2.
In the second case E’ is still an edge of one of the children of A obtained by bisecting
the edge with label i — 1. Thus the midpoint of E’ is still a hanging node in that child
which is now labelled (i+1,7+1,¢). This is the situation described by the first case which
finishes the proof of (i).

Proof of (ii): Since A has generation i, £(A) has label 7. Since this edge is shared with
F(A), we conclude that the sides of F'(A) have either labels (i,7,i — 1) or (i 4+ 1,7+ 1,1).
Also, in this latter case F?(A) = A.

Proof of (iii) This follows from (ii). S)

Note that all admissible partitions, generated by newest vertex bisection based on an
initial labelling according to Lemma 2.1, are graded in the sense that any two cells sharing
an edge differ in generation by at most one.

We shall next give a bound for the number of cells in P,. In preparation for this,
let us note that there are constants c¢;, Cy depending only on Fj such that for each A of
generation ¢, we have ¢;27" < |A| < 127" where |A| = meas(A) is the area of A. Indeed,
each subdivision of a cell gives two cells with each having half the area of the original cell.
By adjusting the constants if necessary, we also infer from (2.1) that

¢277% < diam(A) < C12772, g(A) =1, (2.3)

because P, belongs to an admissible family with parameters C , Gy, ap depending only on
the initial partition P,.!

Using (2.3), we can bound the distance between any two cells from a chain C'(A). Let
the cell FP(A) be of generation v = g(FP(A)) and let F9(A) be another cell from C(A),
where 0 < ¢ < p < m. Then the distance between these two cells can be bounded by
the sum of the diameters of the cells in the chain C(A) between them. According to (iii)
from Lemma 2.2, the generation of these cells decrease exactly by one, and therefore

p—q—1 . \/5
dist(FP(A), FI(A)) < Y G 27012 < —= 0 9-/2 (2.4)

=1

Let M = U;-L;Ol/\/t ; be the collection of all cells that were marked in going from F, to
P,. Here is the way to view the following argument that will bound the number of cells
in P,. We give each cell A’ € M a fixed number C > 0 of dollars to spend. These cells
will spend these dollars in such a way that each new cell that was created in going from
Py to P, will get at least ¢ > 0 dollars where c is an absolute constant. This means, we
can bound the number of new cells created by the number of marked cells.

!Generic constants whose value may vary on each occurrence will be denoted by C. Whenever the
specific value of a constant matters we shall use subscripts. Using the same subscript for different
constants indicates that they occur in the same type of estimates. It is then understood that they may
need to be adjusted at each occurrence.
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We now describe how a cell A’ € M will spend its money. We define

A=1C) 291 (2.5)

j=—1
where C is the constant in (2.3). We define now a function A : P, x M — IR as follows:

(= k+2)2 if g(A) = j, g(A) =k, dist(A, A") < A2H/2
AMA A = and £k <j+1, (2.6)
0, otherwise.

The quantity A(A,A’) is the portion of money which is spent by the marked cell A’ on
nearby cells A € P, of generation at most g(A’) + 1. Given A’ € M with g(A’) = j,
there are for any k < j + 1 at most C’ cells A € P, of generation g(A) = k which satisfy
dist(A, A') < A27F/2 (see (2.3)), where C’ is an absolute constant. Hence for any such
A" € M one has

doap,A) <y vi=c (2.7)
A€EP, v=1

with C' an absolute constant. It follows then from (2.7) that

D D MA L) < CEWM), (28)

Ale M AeP,

i.e. the total amount of money spent by all the marked cells is proportional to their
number. Conversely, each cell in P, receives at least a minimum share bounded away
from zero as will be shown next.

Lemma 2.3 For any A € P, \ Py we have

> AAA) >¢ (2.9)

Ale M

where ¢ > 0 is an absolute constant.

Proof: We fix A and let k := g(A) > 1 be its generation. We are going to define a
sequence of marked cells Ay, ..., A, € M associated to A with each A, of generation
>k — 1. A; is the marked cell such that A € C(A,), i.e. A arose by subdividing the
chain associated to A;. Given that A; has been defined, we let A;; € M be the marked
cell such that A; € C(A;41). We let s be the smallest integer such that g(A,) = k — 1.
Note that there must be such an integer because subdividing a chain can only increase
the highest generation in the chain by one. For each j, we let Aj denote the parent of A;
from the chain C(A;,,), i.e. A; C A;.

For each j > —1, we keep a running count m(i,j) of the number of cells A, with
g(A) =5+ kv <i.
CASE 1: Thereis a j € {—1,0,...} such that m(i,5) > 27/ for some 1 < i < s. In this
case, we choose j* as the integer which has the smallest i (defined to be i* := i) with this
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property. In other words, j* is the integer j whose count first exceeds 2j/~4 and ¢* is the
smallest i for which m(i, j*) > 27"/4. Tt follows from (2.4) and g(A,) — g(A,) < 2 that

\/5 14 14
dist(A, A,) < C 27 (9(Au)=2)/2 < 70 27 9(Au)/2 2.10
8,80 < e <70y .10
n= b=
and therefore for v < ¢*
dist(A, A,) < 7C1 Y m(v,§)2 02 < 701272 Yy " 27 = A2k, (2.11)
j=—1 j=-1

Thus, for each A, v < i*, with g(A,) = j* + k, we have A\(A,A,) = (5*+2) 2. Since
there are at least 27°/4 such values of v, we obtain

D MAA) = (T 2) Y > (2.12)
AleM

with ¢ := min,> (v + 2)722"/* an absolute constant. This is (2.9) in this case.
CASE 2: In this case, for all j > —1 we have m(s, j) < 2//4. Therefore, as in (2.11), we
have

dist(A, A,) < 7C127H2 Y " 279/ = A7k, (2.13)
j=—1
This means A(A, A;) = 1 and again we have (2.9). S)
Theorem 2.4 Suppose that Py, ..., P, is a sequence of partitions generated as described
above. Then, there is a constant Cy > 0 depending only on Py such that
#(Fn) < #(Po) + Co(#(Mo) + ... + #(Ma)). (2.14)

Proof: It follows from Lemma 2.3 and (2.8) that the number of new cells added in the
subdivision and completion process does not exceed C(#(Mp) + ...+ #(My_1))/c and
so (2.14) holds with Cy := C/c. S

We shall use the remainder of this section to spell out different settings in which we
shall use completion and formulate variants of Theorem 2.4 for these settings.

It follows from Theorem 2.4 that to bound the cardinality #(P) of a partition P that
arises through markings, refinements, and then completion, we need only keep control of
the number of markings used in the creation of P. Given a partition P and a second
partition P’ that is obtained from P by first marking some cells for subdivision and
then doing a completion, we shall use the notation m(P’|P) to denote the number of
markings that were used to go from P to P’. Of course, there may be many ways to mark
and complete to go from P to P’ but the particular method (and therefore the number
m(P’'|P)) will always be clear in the context of the algorithm under discussion. Thus,
(2.14) can be rewritten as

#(Pn) < #(By) + Ca im(PHPkl)- (2.15)

k=1

14



Up until now, we have restricted our discussion to the setting where a completion is
done after each set of markings and elementary subdivisions. We can also apply comple-
tion in the following setting. Suppose P is an admissible partition and P is a refinement
of P which is not necessarily admissible. We complete P to an admissible partition P’
by a sequence of markings and elementary refinements as follows. We define M, to be
the set of all A € P which are not in P (i.e. the cells A € M, were subdivided in going
from P to P). We perform the subdivisions for the markings My and then form the
completion to arrive at the admissible partition P; which is a refinement of P. We let
M denote the set of all A € P; that are further refined in going from P to P and let
P, be the admissible partition obtained after marking the cells M; and then completing.
Continuing in this way we arrive at the first admissible partition P,, which is a refinement
of P.

Lemma 2.5 Let P be any admissible partition and let P be a refinement of P. Then,
there is a completion P’ of P which is an admissible partition that refines P and satisfies

#(P') < #(Po)+Co(m(P|Po)+m(P|P)) < #(Po)+Ca(#(P)—#(Fo)) < Co#(P). (2.16)

Proof: Each of the cells in MU M;U---UM,, 1 was subdivided in going from P to
P and hence Y7L #(My) = m(P|P) < #(P) — #(P). Also m(P|Py) < #(P) — #(Ry).
Using this in (2.15) we obtain (2.16). S)

3 Galerkin approximations

Numerical methods based on Galerkin approximations to (1.1) begin with the weak for-
mulation of (1.1) which is to find u € H}(£2) such that

a(u,w) = (f,w), w € Hy(Q), (3.1)
where a(y, w) := (Vy, Vw), (y,w) = (y,w)q := [, ywdz. We use the notation
Jlwl? := a(w, w) = ||Vwl|Z,q)- (3.2)

By Poincaré’s inequality there exists a constant cq, depending on €2, such that for any
w € H (),
callwl|rr(e) < lwll < vl (3.3)
where [[w]7q) = [[w]|7, ) + IVWIIZ,q)-
Given an admissible partition P, we shall denote the Galerkin solution to (3.1) by up
throughout this paper. Thus up is the unique element in Sp C H} () which satisfies

a(up,w) = (f,w), w € Sp. (3.4)

;From a practical point of view it would be better in (3.4) to replace f by an approximation
and consider the solution of this modified variational problem as up. But we want to
conform exactly to the algorithm in [17] so that we do not have to detour through a new
development of a posteriori error analysis in this modified setting.
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The Galerkin solution up is a best approximation to u from Sp in the energy norm

e = upll = inf flu—S]. (3.5)

€edSp

We cannot calculate up exactly. We therefore introduce the following numerical
scheme in which the constant 0 < § < 1 is at this point arbitrary but will be speci-
fied later.

GAL: This algorithm takes as input an admissible partition P, an error tolerance p and
an initial approximation u, € Sp to u, that satisfies

v —upll < A'p (3.6)

with A’ a fized constant. It applies a preconditioned conjugate gradient scheme with initial
guess up to obtain an approzimation up := GAL(P, u,up) to up that satisfies

lup — ap| < op. (3.7)

Remark 3.1 The number of iterations of the preconditioned conjugate gradient scheme
needed to achieve (3.7) depends only on the quotient A'/d. Since each iteration requires at
most C#(P) computations, it follows that the number of computations N(GAL, P, u, up)
satisfies

N(GAL, P, pi, uip) < C3(A'/6)#(P), (3.8)

where C3 : t — Cs(t) increases as a function of t.

Proof: Since ||u—up|| < |u—1ip| we have ||u,—,|| < 2A’u. Thus the target accuracy in
(3.7) is a fixed fraction of the deviation of the initial guess from the exact Galerkin solution
up. The BPX-scheme allows one to precondition the stiffness matrices corresponding to
nonuniformly refined meshes in such a way that the condition numbers stay uniformly
bounded, [11, 13, 18]. Since the error reduction in one iteration of the conjugate gradient
scheme then reduces the current error by a multiplicative factor strictly less than one,
only a fixed number of iterations depending only on A’/ is needed to achieve (3.7). Each
application of the preconditioner requires only C#/(P) operations. )
We shall see that in our later applications of GAL the constant § will be fixed once
and for all and that there exists an A" such that (3.6) is satisfied in each application.

4 Adaptive approximation

In this section, we shall discuss adaptive approximation of a function w which is known
to us and for which we can compute local polynomial approximants. These results do
not apply directly to u since it is unknown but they serve to tell us what is the best we
can expect in terms of approximating u. We shall also use the approximation methods
we develop in this section in parts of our adaptive algorithm, namely to numerically
approximate the right hand side f and to execute our coarsening step.

16



We limit ourselves to adaptive methods based on subdivision using the newest vertex
subdivision rule starting with an initial partition F, and a labelling of vertices as given
in Lemma 2.1. We recall that any adaptively generated partition P can be associated to
a tree T'(P) which is a proper subtree of T,. The leaves of T'(P) give the partition P.
Conversely, any finite proper subtree 7" gives a partition P consisting of the leaves of T'.

Recall that P, denotes the set of all adaptively generated partitions which are obtained
from P, by applying at most n elementary subdivisions. Py consists of the single partition
P,. The partitions in P,, correspond to trees ' = T'(P) which satisfy N(T') = n. Similarly,
we denote by P¢ all the partitions in P,, which are admissible. We also recall our notation
Sp of continuous piecewise linear functions subordinate to P which vanish on 0f).

4.1 Adaptive approximation in the H!(Q)-norm
Given a function w € H}() and a partition P, we define

E(w,SP)Hl(Q) = lIlf ||U}—S||H1(Q), (41)
SeSp
which is the smallest error we can achieve by approximating w in the H'(Q) norm by the
elements of Sp. In the case that w = u is our solution to (1.1) and P is admissible then
in view of (3.3)
v —upll < E(u, Sp)me) < cg'llu — upl, (4.2)

where up is the Galerkin approximation associated to P.
Returning to the general case of a w € Hj(£2), we enter a competition over all partitions
P € P, and introduce the error
on(w) := inf E(w,Sp)m(a) (4.3)
PEPy,
of best adaptive approximation.
It is unreasonable to expect any adaptive algorithm to perform exactly the same as

on(w). However, we may expect the same asymptotic behavior. To quantify this, we
introduce for any s > 0, the class A* := A*(Hj(Q2)) of functions w € H} () such that

on(w) < Mn™°, n=12.... (4.4)
The smallest M for which (4.4) is satisfied is the norm in A*:

w45 := sgﬁ)nsan(w). (4.5)

We have a similar measure of approximation when we restrict ourselves to admissible
partitions. Namely,

on(w) == Piélga E(w,Sp)u o) (4.6)

now measures the best nonlinear approximation error obtained from admissible partitions
and A° := A°(H}(9)) consists of all w which satisfy

oi(w) < Mn™°, n=12.... (4.7)
The smallest M for which (4.7) holds serves to define the norm ||w|

As-
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Remark 4.1 We have A*(H}(Q)) = A*(HL(Q)) with equivalent norms.

Indeed, given any partition P € P,, (not necessarily admissible) which achieves the error
E(w,Sp)m1 () = on(w), we can use Lemma 2.5 to complete P to an admissible partition
P'. Since #(P') < Cy#(P) (see (2.16)), and the error on the partition P’ does not exceed
the error on P and therefore

() < () (1)

from which the remark easily follows.

The reader should be interested to know what functions are in A°. It turns out
that these classes are related to certain Besov spaces. Since we do not use or need
this information in the construction of the algorithm, we postpone this discussion to the
Appendix.

4.2 Adaptive approximation in H~(Q)

We shall also need approximation by piecewise constants which will be our vehicle for
resolving the right hand side f in our numerical algorithm for (1.1). The approximation
will take place in the H~'(Q) norm which is defined for a tempered distribution g by

duality:
(9,0)
lglla-10) == sup ,
semi) 9l

(4.9)

where (-, -) denotes the duality pairing induced by the standard Ls-inner product. Given
a partition P, we let S% denote the class of piecewise constant functions subordinate to
P. For a function g € H~'(Q), we have

E(g,S%)H—l(Q) := inf ||g - SHH—l(Q); (410)
Sesy

which is the best error we can achieve by approximating f in the H ! ()-norm by elements
of 8. Analogously, we have

onl(9)H-1(0) = Plélg E(g,8p)n-1(0) (4.11)

the error of best nonlinear approximation to g by piecewise constants.

As in the case of piecewise linear approximation, we introduce for any s > 0, the
approximation class A*(H (2)) and its norm exactly as in (4.4) and (4.5) except that
we use 0,(g9)n-1(q) in place of o, (w). We have a similar measure of approximation when
we restrict ourselves to admissible partitions. We denote the approximation class in this
case by A°(H~(Q))

Suppose now that g € Ly(2). Then g € H (). If P is any partition of Q and

A € P, we define
v
ga i =—— [ ¢ 4.12
A 2
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which is the average of g over A. Also, ga is the best approximation to g in Lo(A) by
constant functions. Therefore,

Sp(g) = Z gaxa (4.13)

AeP

is the best Ly(Q2) approximation to g by piecewise constants subordinate to P.
We can use S%(g) also to approximate g in the H~'(Q)-norm. In fact, for any admis-
sible partition P, we have the following bound for the approximation error

E(9,Sp)h-10) < lg = Sp(9) |51y < CoE(g, P) (4.14)
where B
E(g,P) =Y |Alllg — gall7,a)- (4.15)
AcP

Indeed, to see that this is true, let ¢ be any function in H}(Q2) of unit norm. Then, since
S9% is the orthogonal projection to 8%, we have

(g — 52(9),8) = (9 — S%(g), 6 — 5%(0) = 3 /A (9—ga)(b—da).  (416)

AeP

We use the Cauchy-Schwartz inequality on each of the terms in the last sum and then the
Poincaré inequality to bound such a term by

19 — 9allzaa) |6 — dallzaa) < CIAIM? (VO oyl — 9allLaa)-

Here C' is an absolute constant because all the triangular cells A are uniformly shape
regular (2.1). Using this in (4.16) and again applying Cauchy-Schwarz, we arrive at
(4.14) by taking a supremum over all ¢ of norm one in H} ().

We can use E(g, P) to define another nonlinear approximation error:

52(g) := inf E(g,P). (4.17)
PPy

Analogous to the approximation classes defined above, we define A*(H1(£2)) using
0,(g) and the norm for this class as before. When dealing with admissible partitions
we shall denote this class by As(H 1(2)). As before As(H (Q)) = A*(H 1(Q)) with

equivalent norms.

4.3 An algorithm for adaptive approximation of a given function

In this section, we wish to describe some of the results of [2] which give adaptive approxi-
mation algorithms for approximating a given target function v defined on €2 in a specified
norm. These algorithms are different from an AFEM since they assume that the target
function v is fully known (whereas our solution u to (1.1) is not). We shall use these
algorithms in two different settings which we shall describe in the following subsections.

Although the algorithms in [2] apply in a more general setting, we shall limit our
discussion to the case of newest vertex bisection and its associated master tree T,. The
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starting assumption is that there is a functional e which associates to each triangular cell
A in the master tree a nonnegative real number e(A). In applications, e(A) is usually
some local approximation error (or a bound for this local error) associated to A.

There are two algorithms, called Second Algorithm and Modified Second Al-
gorithm in [2], that we shall utilize. We shall limit our discussion in this section to
the Second Algorithm. The Modified Second Algorithm, which is a variant of the
Second Algorithm will bee introduced in §4.5 when we shall need it for coarsening.

The Second Algorithm in [2] can be applied under the assumption that e satisfies
the following property: for each A € T, and each subtree T' which contains A as its only
root, we have

D e(A) < Ce(d), (4.18)
A'eL(T)
where C is an absolute constant and L£(T") is the set of leaves of T. Note that (4.18)
follows, in particular, when e is subadditive, i.e.,

e(A1) + e(Ay) < e(A). (4.19)

holds for any A € T, and its children A; and As. In this case, C =1 in (4.18). We shall
use the Second Algorithm in §4.4 when we approximate the right hand side f of (1.1).
For any proper subtree T' C T, we define

E(T):= > e(A) (4.20)

A€L(T)

as the error associated to T'. In applications to adaptive partitioning, F(7") would corre-
spond to the square of the error associated to the partition given by the leaves of T'.
Recall that Ty := T'(P,) and that for any tree 7" which is a refinement of Tj the number
N(T) is the number of subdivisions necessary to create T' from Tp; it is also the number
of interior nodes in 7" starting from the root Ty. We let 7,(Tp) be the set of all trees T’
with N(T') = n.
We enter the following competition among all proper trees in 7, (7p):

E,:=E,(Ty) := inf E(T). (4.21)

TeTn(To)

So E,, is the smallest error we could achieve using trees from 7, (7p). Although the problem
is finite, it is numerically too intensive to find a best tree which achieves the minimum
error F,, because #(7,(Tp)) is exponential in n.

Suppose that given any A, we are able to compute e(A). We would like to find a
tree which performs almost as well as the best tree from 7, (7p) and to do so while only
computing O(n + #(Tp)) values e(A). The main result of [2] is to show that this is
possible. Namely, that paper gives a numerically realizable algorithm which yields near
best trees T from 7,(Ty) by which we mean

E(T) < CyBupn (4.22)

where Cy, ¢y > 0 are absolute constants (in particular they do not depend on the starting
partition P).
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The algorithm finds a near best tree for the given value of n by creating a sequence
of trees T' =T}, 7 = 1,2,... starting from the initial tree Ty. Roughly speaking, at any
given stage in the algorithm, it computes e(A) for all leaves in the current tree and then
subdivides the leaves with the largest e-value. However, to avoid a lengthy sequence of
subdivisions with insufficient reduction in the error, the algorithm in actuality uses a
modified functional é&. What is important in the context of the present paper is that to
create the tree in (4.22) requires the computation of at most #(7p)+ Cn values of e where
Ty is the starting tree.

We shall use this algorithm in the following setting described in [2] as the Thresh-
olding Second Algorithm. Given an admissible partition P which is not necessarily
Py and the corresponding tree T'(P), let now Ty := T'(P) be our set of root nodes. For
any tree T which is a refinement of Tj the number N(T'|Ty) denotes now the number of
subdivisions necessary to create T from Ty. So N(T'|Ty) = N(T') when Ty = T'(Fp). Given
a tolerance ;1 > 0, and an admissible partition P the algorithm produces a tree T}, which
is a refinement of Ty = T'(P) with the following properties (see Corollary 5.4 of [2]):

P1: T, satisfies
B(T,) < p (4.23)

P2: For absolute constants ¢; and Cy (independent of P), it holds that whenever T is a
refinement of T'(P) satisfying

E(T) < cp, (4.24)

then ~
N(T,|Ty) < CiN(T'|Tp). (4.25)

Since we are interested in admissible partitions, we shall add a completion step on the
end of this algorithm to obtain the following algorithm.

Approximation Algorithm (AA): Given an initial partition P, an error functional
e satisfying (4.19), and an error tolerance pu > 0, AA produces as output an admissible
partition P = AA(P, u) which is a refinement of P in the following way. First it uses
the Thresholding Second Algorithm to produce a tree T, which satisfies P1 and P2.
We can write T, = T(P) where P is the partition formed by the leaves of T,. We now
apply completion to P as described in Lemma 2.5 to get the admissible partition P’ from
P.

The following lemma describes the properties of this algorithm.
Lemma 4.2 The output P = AA(P, ) satisfies
E(T(P) < . (4.26)

In addition, there are absolute constants c1,Cy > 0 such that whenever P is any refinement

of P which satisfies E(T(P)) < c1u, then we have
m(P'|P) < CLN(T(P)|T(P)). (427)

Also, the number of evaluations N(AA, P, 1) of e needed to compute the output P' of AA
satisfies

N(AA, P, ) < 2(#(P)) < 2#(P"). (4.28)
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Proof: The subadditivity property (4.19) guarantees that the error for the admissible tree
T(P') is smaller than that of T,. Hence (4.26) follows from (4.23). If P is any refinement

of P which satisfies E(T(P)) < c1u, then by virtue of (4.25),
N(T(P)|T(P)) < CiN(T(P)|T(P)). (4.29)

That is the number of subdivisions needed to create P from P does not exceed the
right side of (4.29). By definition, m(P'|P) = N(T(P)|T(P)). Finally, (4.28) is obvious
since the only values of e that need to be computed in the execution of the Second

Thresholding Algorithm are those on the nodes of T'(P) and the number of these
nodes does not exceed 2#(P). S)

4.4 Approximation of the right hand side

We shall describe in this section an algorithm for approximating the right hand side f
whenever f € Ly(€). This algorithm will be a step in our adaptive algorithm for solving
(1.1). We shall approximate f by piecewise constants on admissible partitions that are
adaptively generated using newest vertex bisection. To achieve this approximation we
shall use the adaptive approximation algorithm A A of §4.3. Let F, be any fixed initial
partition and let T, denote the master tree for newest vertex bisection. As before, we let
P denote the class of all admissible partitions that can be obtained using newest vertex
bisection with initial partition F;.
For each A € T, we define

e(f,A) = e(A) = [A[llf = fallL,(a)- (4.30)

The subadditivity property (4.19) follows easily from the fact that fa is the best Ly(A)
approximation to f by constants.

The following statements describe our algorithm for approximating f and its proper-
ties:

APPROX (f,P,;) — P': The input of this algorithm is the function f € Lo(S2), an
admissible partition P € P, and the error tolerance p > 0. The algorithm uses the
inputs f, P and p? in algorithm AA with the functional e defined by (4.30) and receives
the output partition P' = APPROX(f, P,u) := AA (P, u?) which, by the properties of
AA, is admissible and satisfies:

E(f,P') = B(T(P")) < 4 (4.31)
From the properties of (AA) we immediately have the following facts, see Lemma 4.2.

Proposition 4.3 If P is any partition which is a refinement of P and satisfies E(f, lf’) <
cip?, then 3
m(P'|P) < CiN(T(P)|T(P)), (4.32)

where c1, Cy are the constants associated to AA. The number of evaluations N(APPROX, f, P, i)
of e needed to compute the output P' to APPROX satisfies

N(APPROX, f, P, ;1) < 2(#(P")). (4.33)
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The following lemma describes how we shall use APPROX.

Lemma 4.4 If we apply APPROX to an input function f € A* = A*(H1(Q)), s >0,
an input partition P, and an input tolerance u > 0, then the output partition P’ =
APPROX(f, P, 1) satisfies

m(P'|P) < Ci(s) I3 (4.34)
with C1(s) a constant depending only on s. Also,

#(P') < Ca(s)(#(P)

with Cy(s) a constant depending only on s.

1/3 Py (4.35)

Proof: Let P* be the smallest partition in P which satisfies
E(f, P*) < 1. (4.36)

where ¢; is the constant appearing in algorithm A A. Then, by the definition of the class
A®, we have

#(P) < 1L (o) e, (4.37)

We let P be the smallest partition which is a common refinement of P and P*. Then, P
can be obtained from P using at most #(P*) refinements. Also, E(f, P) < ¢;u* becaus

e
P is a refinement of P*. Therefore, the output partition P’ of APPROX satisfies (4.32)
which means that

m(P'|P) < CiN(T(P)|T(P)) < Cul| fIIY (eru) ™. (4.38)

This proves (4.34). To estimate the cardinality of P’ we can use (2.16) and (4.37) to
obtain

#(P') < #(Py) + Co(m(P|Ry) + m(P'|P)) < Co(#(P) + Ci(s)
which gives (4.35). S

Yol (4.39)

4.5 Coarsening

In this section, we describe our second application of the adaptive approximation algo-
rithm. The setting is the following. Suppose that P is any admissible partition and up is
the Galerkin solution to (1.1) on this partition. We assume that we have a function ®(P)
which provides an upper bound for the Galerkin error

lu —upl® < ®(P). (4.40)

Such an upper bound @ is given in §5 (see (5.2)).

The algorithm we shall construct in this subsection starts with the input of two ad-
missible partitions P, P’ with P’ a refinement of P, and a tolerance y for which we know
the bounds

lu = upl* < ®(P) < p* (4.41)
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and
lu — up > < @(P) < ap®. (4.42)

At this stage, the constant 0 < o < 1 is arbitrary but fixed. We shall specify the value of

a, and the two constants $ and « that follow, at the end of §7. For now the reader should

think of these as arbitrary but fixed constants satisfying the relations we specify below.
With these inputs, we shall generate an admissible partition P which is a coarsening

of P' such that a certain further refinement r(P) satisfies

v — w,p)I* < B, (4.43)

where @ < # < 1. The main property (not held by P’) we will gain in the construction
of P is that we will be able to favorably bound its number of elements. The reason we
need the refinement r(P) of P and not just P in (4.43) is a technical one that will be
explained later in this section.

To find P, we are going to use an adaptive approximation algorithm SAA which is
a modification of AA that was introduced and analyzed in [2]. The algorithm provides
an approximation to ups on a coarser partition (namely ]5) than P’. We will explain the
algorithm SA A in more detail as we proceed.

We start by defining an error functional e for approximating functions w € H}(2) by
functions from Sp with P an admissible partition. To do this, we introduce the minimal
ring associated to a triangular cell A € T,. Given any admissible partition P from P*
and A € P, we define

RAP) = | & (4.44)
A'€P,ANA'#(

which is the first ring about A. This ring depends on P. However, we can find a minimal
ring about A which does not depend on P. Namely, we define

R(A):= () RAP= [J A (4.45)

PcPa,A€P A’eP_(A)

where P_(A) is the collection of cells from 7, which touch A and make up R_(A) .

Before returning to the definition of e that we will use, we take this opportunity
to develop a little further the properties of the set P_(A) because we will need these
properties later in this section. Let mg be the maximal valence that can occur for any
vertex v in any admissible partition. Because of the uniform boundedness from below of
the angles in triangular cells for admissible partitions, it follows that my is a fixed finite
constant.

Lemma 4.5 Suppose P is an admissible partition and A € P has the label (k+1,k+1,k).

Any cell A' € P such that A'N A # 0 has label (k+ v,k + v,k + v — 1) where =2 <
v < motl
=T

Proof: Any such A’ shares a vertex v with A. This vertex is common to two edges of
A, one, which we denote by ¢y, is labelled & + 1, and the other, which we denote by
€1, is labelled k, or k + 1. We can assume that all other edges that share v arise when
transversing the edges from ¢j to £; in a clockwise direction. We claim that the maximum
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label of any of the edges containing v is k + ¢ where ¢ < mOT“ To see this note first that
the labels of edges that share a cell can differ by at most 1. Now suppose that the number
of edges incident at v is r. Let € be such an edge with label k£ 4 ¢. Stepping from ¢y to
e, we need at least ¢ — 2 more edges between these two. Moving from ¢ to ¢; at least
another ¢ — 2 more edges. That makes a total count of at least 3+2({ —2) =20—-1 <,
and therefore ¢ < % This confirms the upper bound for v. To obtain the lower bound,
suppose now that v is common to an edge € with label £ — ¢ and that again r edges meet
at v. It takes at least ¢ intermediate edges to go from gy to € and at least £ — 1 edges to
go from e to e;. Thus, the count is at least 3+ ¢+ (¢ — 1) = 20+ 2 < r and therefore
/< ’"—;2 This means that ¢ < mOT_g which confirms the lower bound. o

Figure 6: Full refinement of a triangle

For the formulation of the next lemma, we introduce the notion of a full refinement.
Given an admissible partition P, by a full refinement of P we mean the subdivision of
each cell in P into six cells using newest vertex bisection. These new cells consist of two
grandchildren of A and four great grandchildren of A and result in the bisection of each
original edge of A as well as the bisection of the new edge added when A is subdivided
using newest vertex bisection (see Figure 6).

Lemma 4.6 Assume that P is any admissible partition and r(P) is the partition obtained
from P by subjecting each cell in P to [%>] full refinements. Then r(P) is admissible and
any ring R(A',r(P)) of a cell A" € r(P) is contained in the minimal ring R_(A) of the

ancestor A € P of A.

Proof: The admissibility of r(P) follows from the fact that one full refinement of every
cell in an admissible partition leaves no hanging nodes. For the second property note
that a full refinement to a triangular cell with label (k + 1,k + 1, k) produces cells whose
new edges carry labels that are at least k 4+ 2. Thus ¢ successive full refinements produce
triangles with generations at least k 4+ 2¢. Next note that the minimal ring of A con-
sists of triangles touching A and having the highest possible generation admitted by 7.
We have shown in Lemma 4.5 that the minimal generation of cells in R(A, P) is greater
than k — mOT_Q — 1=k — %2 Thus, applying [%2] full refinements the smallest possible
generation appearing in R(A’,r(P)) will increase to k — 752 + 2[%2] > k + %2, This is
larger than the highest possible generation appearing in R(A, P) which by Lemma 4.5 is
at most k + mOTH — 1. The proof is complete. )
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We now return to our problem of coarsening. Given a function w € H}(Q2) (later we
shall take w as an approximation to ups), we define

e(A) ==e(w,A) := ir;f |w — S“%P(R_(A)) = [Jw — SA||12'-11(R_(A))5 (4.46)

where the infimum is taken over all continuous piecewise linear functions S defined on
R _(A) which are subordinate to P_(A) and vanish on 02N JR_(A) whenever this set is
not empty.

This error functional e will not satisfy (4.18) but does satisfy the following weaker
version of this property:

Weak subadditivity: For any A € T, and any admissible tree T' which has A as
its only root node, we have

D e(A) < Ce(h) (4.47)

A'EL(T)
where C' is an absolute constant and L(T) is the set of leaves of T.

Thus the only distinction in this weak subadditivity is that (4.47) is only required to
hold for admissible trees.

Proposition 4.7 The local error functional e, defined by (4.46), satisfies the weak sub-
additivity property (4.47). Moreover, for E = E(w,-) defined by (4.20) for this choice of
e, and any admissible partition P € P* one has for any w € H} ()

E(w,T(P)) < Cj inf [w— S|[3q), (4.48)

SeSp

where the constant C depends only on the initial partition Py which consists of the roots
of T.

Proof: Let T be a finite admissible tree with single root A. The leaves £(T') of T' form
an admissible partition of A. For each A’ € £L(T'), we have that P_(A’) is a refinement
of P_(A) on the set R_(A’), and R_(A’") C R_(A). Therefore,

||’LU - SA’HHl(R,(A’)) S ||’LU — SA“Hl(R,(A’))a (449)

by the very definition of Sa:.

Let us observe that a given point x € R_(A) appears in at most C of the sets R_(A’),
A" € L(T), with C an absolute constant. Indeed, if z € A* with A* € L(T), then,
because of the minimality of the rings, x will not appear in any R_(A’) unless A’ touches
R_(A*). Since the partition £(T") is admissible, there are at most C' cells which touch
R_(A*) with C' an absolute constant. We use this property and the set subadditivity of
I 112 to find,

Z |w — SA’”%{l(R_(A')) < Z Jw — SA||12'-11(R_(A’)) <Cllw - SA“%P(R_(A))' (4.50)
A'eL(T) Alel(T)

This inequality verifies property (4.18) for this choice of e.
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As for (4.48), let wp € Sp be the minimizer of the right side of (4.48) and note that
only a finite uniformly bounded number of the minimal rings R_(A), A € P, overlap at
any given point in 2. Hence,

Z ||w — SA||2H1(R_(A)) < Z ||w - wP||2H1(R_(A)) < C“w o wP||2H1(Q)’
AeP AeP

as claimed. o

We cannot directly reverse the inequality (4.48) which is why we introduced the re-
finement r(P) which will allow us to do the reversal. It is obvious that r(P) is again
admissible.

Proposition 4.8 There exists a constant Cy depending only on the initial partition Py
such that for any admissible refinement P € P* of Py, one has

inf [Jw — S|} q) < CaE(w, T(P)). (4.51)
SEST(p)

Proof: We shall employ quasi-interpolants for bounding the best approximation in the
energy norm. To this end, recall that the Courant elements ¢, v € V,(p), form a basis
for §,(p). Thus each S € S,(p) has the unique representation

S = Z S(U)(ﬁ,,: Z )\v(s)éva (4'52)

’UGVT(P) UGVT(p)

where the ¢, are normalized to have norm one in H'(Q), i.e. ||gz~5v||H1(Q) = 1, and where

the A\, are dual functionals, i.e. /\v(gz;v:) = 0, .. This means that the )\, also have norm one
as linear functionals on S,(py when this space is equipped with the H*(€) norm. There is
a norm preserving extension ), (which we continue to denote by \,) to all of H}(Q) and
we can require that this extension is given as the integral with an L, function A,:

Ao(9) = / ghy, (4.53)

with

B, :=supp(A,) C U{A er(P):ve A}, (4.54)

the star of v. It follows that
A9l < llgllas,)- (4.55)
Clearly, Q,py(w) :== > v " Ao(w), defines a projector from Ly(£2) into S,p). Let
us now bound ||w—Q,p)(w)|| g1 (q).- Given any triangular cell A € P, we take an extension
of S to a continuous piecewise linear function on €2, vanishing on 9€2 which is subordinate
to r(P). This is possible since P_(A) is contained in T'(r(P)). We denote this extension

also by Sa. We then have Q,p)(Sa) = Sa so that, in particular, both quantities agree
on A. Therefore it follows that

2||’LU - SAH%P(A) + 2||QT(P)(7«U - SA)“%{I(A)
2e(A) + 2/|Qup)(w — Sa)llFri(a)- (4.56)

lw = Qrpy (W)l a) <
<
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We need to bound the second term in (4.56). Let us note that on A only finitely many
terms \,(w — Sa)¢, are nonzero. These correspond to the vertices from r(P) that are in
A and, in view of the fact that each full refinement subdivides each triangle into six and

introduces four new vertices on it, there are at most C = 3 +4 (6[%(11 — 1) vertices from

r(P) in A. Let v be one of these vertices, then
[ Ao (w — SA)QEUH%-P(A) < jw— SAH%Il(BU) < flw - SAH%H(R,(A)) , (4.57)

where we have used that, by Lemma 4.6, B, C R _(A), v € AN VT(p). Hence, summing
over all vertices v € V,(p) in A, we obtain

1@r(p)(w — Sa) I3 (ay < Ce(A). (4.58)
Using this back in (4.56) and summing over all A € P, gives
lw = Qe (w) [0y < Ca E(w, T(P)). (4.59)

This proves the assertion. )

Throughout the remainder of this section let E be defined by (4.20) for e, defined by
(4.46) with w an arbitrary but fixed H'(£2) function. We return now to our problem of
generating the set P. For this we shall use the Modified Second Algorithm of §7 in
[2]. This algorithm exactly matches our setting of newest vertex bisection. We recall the
properties of this algorithm (see Corollary 7.4 of [2]).

Modified Second Algorithm (MSA): Given any function w € H}(Q) and any
error tolerance > 0, MSA produces as output an admissible partition P' = MSA (w, u)
such that

E(w,T(P")) < p. (4.60)

Moreover, there are absolute constants ¢1,Cy > 0 such that whenever P is any admissible

partition which satisfies E(w,T(P)) < cip, then we have
#(P) — #(By) = N(T(P)) < CIN(T(B)) = Cy(#(P) — #(R).  (461)
The number of evaluations N(MSA, w, u) of e to compute the output P’ to MISA satisfies
N(MSA, w, 1) < Cy(#(P'). (462)

In contrast to APPROX, the algorithm MSA always starts from the root partition F.
We could also have developed an algorithm which started from any given initial partition
P but this would be at the expense of more technicalities which we wish to avoid.

We shall use the algorithm MSA in the following coarsening algorithm which is the
main algorithm of this section. The constant v in this algorithm will be specified later.
The reader should think of v as any fixed constant 0 < v < 1 until it is later specified.
The algorithm COARSE will also use GAL.

COARSE: We take as inputs the admissible partition P', the tolerance u such that (4.42)
holds, and an initial approzimation ip € Spr to upr satisfying |up — ap|* < (A'w)?.
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The algorithm COARSE outputs the admissible partition P = COARSE(P’, u, iip/) as
follows. We apply GAL to obtain the numerical approximation tpr = GAL(P', p, upr).
We take w = ip and apply MSA with inputs w and yu* to obtain P = MSA (w,yu?)
where v will be specified below. It follows that

E(up, T(P)) < yu*. (4.63)

The rest of this subsection will be devoted to deriving the important properties of the
output P of COARSE. Let us first observe that given P’, the number of computations
necessary to invoke the algorithm, is bounded by

with C5(A’/0) a constant depending only on the ratio A’/d, see (3.6) and (3.7). We have
already observed that the number of computations to calculate upr is bounded by the
right side of (4.64) (see (3.8)). To compute Sa, A € P, from the least squares problem
uses a fixed number of computations because @ps is continuous and piecewise linear and
the number of cells in P_(A) has an absolute bound (see our discussion of the structure
of P_(A) given above). We have observed in (4.62) that the number of evaluations of e
needed to execute MISA is bounded by Cs#(P'). the estimate (4.64) follows now from
Remark 3.1.

Next, we want to bound [|u — u,(p|| for the Galerkin solution u,p). To do this, we let
S be a best approximation to dp: from S, (p in the H'(Q) norm. Thus,

lv —wel < llu =S < flu —up| + flup = @p|| + lap — S|

< (Vap+du) + lip — Sllm@ < (Va+6 +/Ciy)p < /B (4.65)

where in the third inequality we used (4.42) on the first term and we used (3.7) for the
second term. Then we use Poincare (i.e. (3.3)) followed by (4.51) on the remaining term.
The last inequality will hold provided «, ¢, and y are chosen so as to satisfy

a<B/9 and §<+/B/3 and Cuy < f/9. (4.66)

We impose these requirements on «, ¢ and v in what follows.
We now summarize the properties of the output P of the algorithm COARSE.

Theorem 4.9 Given as inputs the admissible partition P’ an input tolerance p, and an
initial approzvimation up the output P =COARSE(P’, ju,up:) has the following proper-
ties:

(i) The Galerkin solution u,py on r(P) satisfies:

lu = w, () lI” < Bp?. (4.67)
(ii) The number of computations N(COARSE, P', i, up) used to compute P satisfies

N(COARSE, P, i, ipr) < Cs(A'/8)(#(P")) (4.68)
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with C5(A'/6) a constant depending only on A’/0.
(iii) If u € A* = A*(HL(RY)), then

1/s ~1/s (4.69)

#(P) < #(Po) + Co(s)|lull 4 =L (@)

with Cy(s) a constant depending only on s.

Proof: Statement (i) is just (4.65). Statement (ii) follows from (4.64). The proof of (iii)
is similar to the proof in Lemma 4.4. Let P* be the smallest admissible partition that
satisfies

u = up 2 < Ju = upe [y < E202 (4.70)

where ¢ is a constant that will be specified later in this proof. ;From the fact that u € A°,
we know

H(P) < JJull £ (@) 7", (4.71)
Moreover, note that up« also approximates @pr well. In fact, by (4.42) and (3.7),

< (Wa+d+ é)p.

lapr —wpll < flupr —ull + lup — e + flu —up-

Therefore, from (4.48) and (3.3), we obtain

E(up,T(P")) < Cyllipr — up+||gnq) < e Ch(Va+ 6 + &)’ < ey (4.72)
provided
a< % and 4,6 < (C;) ) . (4.73)
We can now apply (4.61) and obtain
#(P) — #(Py) < Ci(#(P") — #(P)) < Ci#(P7) < Co(s)[ul 45 (4.74)
where the last inequality uses (4.71). S)

Let us remark on the order that all of the above constants are chosen. First, we are
free to choose 0 < # < 1. With the value of  fixed, we now choose v so that the second
inequality in (4.66) is satisfied. Then we choose a so that both the first inequality in
(4.66) and the first inequality in (4.73) is satisfied. We also choose ¢; so that the second
inequality in (4.73) is satisfied. Further, we require that J satisfies (4.73). Later in §7, we
shall fix the value of # and then all other constants can be specified.

5 The adaptive algorithm of Morin, Nochetto, and
Siebert

In this section, we shall recall the AFEM of Morin, Nochetto, and Siebert [17] which is
based on subdividing (using the newest vertex rule) certain collections of marked cells.
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We shall later modify this algorithm to arrive at our new algorithm. Our notation is
slightly different from theirs in places.

The strategy in [17] for marking cells for subdivision and the guaranteed error reduc-
tion that results is based on two criteria. The first of these is a local error indicator that
we now describe. Suppose that P € P® is an admissible partition. Given an edge E € Ep,
we let (0 denote the union of the two triangles that share E and let /g denote the length
of E. We also denote by Jg(P) the jump of nL,Vup across E, where for each cell sharing
E, ng is the respective outer normal of E. The quantity

n = np(P) = 02T [y + [ diam(Qe) £, 0, (5.1)

is an indicator of the local error in v — up. One can show that the sum of these local
indicators bounds the square of the global energy error from above. More precisely, there
exists an absolute constant Az such that

Ju—upl? < 45 3 e

Ecép

We therefore define the global quantity

(P) := A3 Z ne- (5.2)

The second ingredient that we shall need is a bound for the global H! error in
approximating f € Ly(€2) by piecewise constants in terms of a sum of local quantities.
We have already introduced these quantities in §4.4. We recall the local error functional

e(A) = |A[Ilf = fallZ,ca)» (5.3)

where fa is the average of f on A. We also have the global error

E(f,P):=> e(A), (5.4)

AeP

which was used in algorithm AA.
The local error indicators from (5.1) together with (5.4) can be used to prove the
following bounds for the Galerkin error (see [17] equations (2.7) and (2.8)):

A1®(P) — A2E(f, P) < [lu — up|l* < ®(P) (5.5)

where A;, As > 0 are absolute constants.

To describe the main result in [17], we denote for each A € T, by G(A) the set of
six triangular cells obtained from A when using a full refinement as described in the
paragraph preceding Lemma 4.6 (see Figure 6). The following theorem is Theorem 3.1 of
[17]:
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Theorem 5.1 Given 0 < 0 < 1, there exist constants 0 < 7 < 1 and Ay > 0 with the
following property. Let P be any admissible partition in P® and suppose that & is a
collection of edges from Ep such that

A3 > np > 00(P), (5.6)
Ee&y
and B
E(f,P) < Ays®. (5.7)
If P is any admissible refinement of P that contains G(A) or a refinement of G(A) for
every A which has an edge in common with &y, then either |Ju — up||* < p* or
lu —up | < 7llu - upl®. (5.8)

In other words, if the error in approximating f is small enough then the refinement
strategy (5.6) guarantees an error reduction until the desired tolerance y is met. Using
this result, Morin, Nochetto, and Siebert build an AFEM which they prove converges
whenever f € Ly(Q).

Given a partition P and a marked set & of edges satisfying (5.6), we shall say that
a partition P’ which is a refinement of P has the G-property if it is admissible and P’
contains G(A) or a refinement of G(A) whenever A has an edge in &,.

6 Modifications of the MINS Algorithm

We shall make some modifications of the MINS algorithm in this section in order to
prepare for its use in our new algorithm of the next section. These modifications will center
on two issues. The first is to recast the algorithm in the form of elementary markings and
then completions since it is in this form that we can apply the results of §2 which bound
the cost of completions. The second issue is more substantial. In a numerical algorithm
we cannot compute up or ®(P) exactly. We shall have to replace these computations by
approximate computations up and <f>(P) We shall need to examine the effect of these
approximate calculations. We shall show that it is possible to calculate these quantities
approximately while still retaining the error reduction in the MNS algorithm. Moreover,
we will be able to bound the computational complexity of these approximate calculations.

To begin the analysis of this section, we first note some properties of E and ®. First
of all if P’ is a refinement of P then

E(f,P') < E(f,P). (6.1)
This follows from the definition of £ (4.15). Secondly,
E(f,P) < (A1/2A4,)®(P) implies ®(P) < As|u — up|? (6.2)
with As = 2/A;. This follows from the lower inequality in (5.5).

These two observations will be used several times in the following form.
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Remark 6.1 Assume that for some admissible partition P we have
2 2 . Ar
Asllu —up|” < p”  and  E(f,P) < aa," (6.3)

Then for any admissible refinement P’ of P one has
d(P) < . (6.4)
Proof: Suppose that ®(P’) > u?. Then, by (6.1),

A

Agipys A s B Py > B(s P,
24,

24,

Thus (6.2) applies and since P’ is a refinement of P our assumption (6.3) yields
®(P') < Asllu — up||* < Asllu — upl* < 4%,
which is a contradiction and hence proves (6.4). S

Our first modification of MINS which we shall call MMNS is to recast it in the form
of marking and completion and still have the property that the refined partition contains
G(A) (we need this to be able to obtain the guaranteed reduction in Theorem 5.1). Here
is a description of

MMNS (P, ) — P': This algorithm takes as input an admissible partition P, the
corresponding Galerkin approximation up and an error tolerance p with P satisfying
E(f, P) < Ayu® and produces a new partition P' = MIMNS(P, 1) as follows. We mark
all triangular cells which have an edge from & where & are the marked edges from MINS.
Call this marked set My. We perform a refinement and then a completion for My and
P giving the new partition P|. We next mark any cells A" in P which have a proper
descendent which is one of the cells in G(A), A € My. Call this set of marked cells
M. We do a refinement and completion for My and P| giving the new partition Py. We
repeat this process one more time ending with the partition P' = Pj.

Here are the properties of MMNS.

Theorem 6.2 For the output P’ of MMNS we have that either ||u — up/| < @ or
lu—up||? < 7llu—up|®. The number of subdivisions N(MMNS, P, 11) needed in MMNS
satisfies

N(MMNS, P, 1) < Cs#(P), (6.5)

with C3 an absolute constant.

Proof: For each cell A corresponding to a marked edge in MINS, the partition P’ contains
a refinement of the full refinement G(A). Hence, Theorem 5.1 applies and we obtain the
stated bounds on ||u — up|. As for (6.5), the number of cells in M does not exceed
#(P) and hence #(P]) < C#(P) (see (2.16)). Repeating this argument we derive (6.5).
0
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Our next modifications of MINS center around the fact that we cannot compute up
or ®(P) exactly. Therefore, we shall use the approximation up := GAL(P, u,up). We
define the local error estimators 7z as in (5.1) with @p in place of up and similarly define
®(P) as in (5.2) with these new fjz in place of ng. A standard trace argument shows that

e — el < Billup — @pllf gy, (6.6)

where Bj is some fixed constant depending only on Pj;. As a consequence one has for
another constant By > 1

Ay Y [ — el < Bid®pt. (6.7)

Ecép

With this numerical version ® in hand, we can revisit the algorithm MMNS and ob-
tain the corresponding numerical version of this algorithm which we denote by NMMNS.

NMMNS (P, p,up) — P': This algorithm takes as input an admissible partition P, an
error tolerance p with P satisfying E(f, P) < Aqu®, and the numerical approximation
tup := GAL(P, u,up), and produces a new partition P' = NMMNS(P, u, up) as follows.
We let & be any set of edges in Ep such that

A3 > i > 09(P). (6.8)
Eeéo

We mark all triangular cells which have an edge from & and call this marked set M.
We perform a refinement and then a completion for My and P giving the new partition
P|. We next mark any cells A" in P| which have a proper descendent which is one of
the cells in G(A), A € Mq. Call this set of marked cells My. We do a refinement and
completion for My and P] giving the new partition Py. We repeat this process one more
time ending with the partition P' = Pj.

Here are the properties of NMMNS.

Theorem 6.3 If §% < 0(4B;) 1, then for the output P' of NMMNS we have that either
lu — up|| < por lu—up|® < 7llu — up||* where 0 < 7 < 1, depends on . The number
of subdivision and computations N(NMMNS, P, i) needed in NMMNS satisfies

whenever the initial guess tp satisfies (3.6).

Proof: From (6.7), we have that

0(®(P) — B16°4*) < 00(P) < A3 Y iip < A3 Y n+ B16*’ (6.10)

Ecé Ecé,

We consider two cases:
CASE |Ju — up|| < p?: Since P’ is a refinement of P, we have ||Ju — up/|| < ||u — up|| as
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desired.
CASE: |u — up|| > p? In this case ®(P) > u? and 2B, < §/2. Therefore (6.10) gives

(6/2)®(P) < A3 > _ ng. (6.11)

Eeffo

We can therefore apply Theorem 5.1 (with §/2 used in place of §) and obtain |Ju—up: || < p?
or |[u — up|| < 7||lu — up|| with the 7 corresponding to 6/2.

The bound on N(NMMNS, P, i, ap) follows as in the proof of (6.5) with the caveat
that we need to add the number of computations used in GAL. But these are bounded
by C3(A’/6)#(P) because of (3.8) in Remark 3.1. S)

The following algorithm REDUCE is the main algorithm of this section. In this
algorithm, there appears a constant A* which will be specified later. Its role is to make
sure that the term E(f, P') appearing in (5.5) is negligible compared to ®(P’) for all of
the partitions P’ that are encountered in the execution of the Algorithm.

REDUCE (P, u, i, ip) — P': This algorithm takes as input any tolerances 0 < u' < p,
any admissible partition P for which we know

O(P) < y? E(f,P) <A (6.12)

and any initial approzimation up € Sp (to be used in GAL) satisfying (3.6). It outputs
a new partition PP = REDUCE(P, u, ¢/, up) which is a refinement of P and satisfies

B(P') < (W), B(f,P) < A"()" (6.13)

Here A* is any constant satisfying

. Ay Ay ' 2
A* < L — .14
_mm{As’2A2}<M> ’ (6:14)

where Ay, Ay, Ay and As are the constants from (5.5), (5.7) and (6.2), respectively.

We describe now the steps used to produce P’. We take u’ = u’Agl/ ? and use
NMMNS with the inputs P and z”” and %p. The result is a partition P, = NMMNS(P, 1" ip)
which is a refinement of P. We reapply NMMNS with inputs u”, Py, and the same up
as the initial approximation to up . We obtain the output P, = NMMNS(Py, 1", ap).
we repeat this k£ times (each time using the same @p as an initial approximation) where
k is chosen as the smallest integer so that 7% < (A45)~'(¢'/p)?. We now apply APPROX
with the input P, and v/A*z/’ to get the partition P/ = REDUCE(P, p, i, ip).

Let us now check that P’ satisfies (6.13). First of all, we know that the second
inequality in (6.13) is valid because of the APPROX application. So we need to verify
only the first inequality. Note that (6.14) implies, in particular, that A* < A4(u"/u)?* so
that Theorem 6.3 is applicable to each iteration. So we have two possibilities. The first
case is that [[u—up || < p” for one of the values of j € {1,...,k}. Since P’ is a refinement
of P;, we have

Asllu — upr|* < Asllu —up |I* < As(u")* < ()", (6.15)
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In view of the second relation in (6.13) and the condition (6.14) on A*, we can invoke
Remark 6.1 (with P replaced by P’) to conclude that the first relation in (6.13) is also
valid in this case.

The other case is that the error is reduced by the factor 7 at each application of
NMMNS which gives

Asllu —upl* < Asllu — up, [ < Ast*lu — upl® < As7"(P) < (1) (6.16)

which, again by Remark 6.1 confirms the validity of the first inequality in (6.13).
The following proposition bounds the number of subdivisions/computations used to
produce P’.

Proposition 6.4 The number of elements #(P') satisfies
#(P') < Cylu/s)#(P). (6.17)
The number N(REDUCE, P, i, 1/, ip) of computations used to produce P’ also satisfies
N(REDUCE, P, i, i/, ip) < Cs(p, i/ 1/ )#(P), (6.18)

where p is the mazimal ratio A’/ for all constants A" from (3.6) encountered in the calls
of GAL invoked in REDUCE.

Proof: From Theorem 6.3, we have that #(P,) < C#(P) and #(Pj,1) < C#(P;), for
j=1,...,k— 1. Since k is fixed, this gives the bound (6.17). Regarding the number of
computations, we know that the number of calculations needed in GAL to compute up
from up does not exceed C#(P) with the constant depending only on A and the ratio
1/, The number of calculations in each iteration of NMMNS uses at most C(p)#(P;)
calculations as was shown in Theorem 6.3. Therefore, (6.18) holds in this case as well. ©

7 The Main Loop

We are now in a position to build the main iteration of our adaptive algorithm. This loop
will use the REDUCE algorithm to generate a partition P’ and then follow it with a
coarsening step whose sole purpose is to give a control on the size of the output partition.
The description of this algorithm will serve to set the value of the constants «, 3, 4§, v, A*
which have appeared earlier but were left unspecified. We call the algorithm for the main
loop MAIN. B

MAIN (P, p1, tr(py) — P: This algorithm takes as input a tolerance p, an admissible
partition P, and an initial approzimation G, py to uy(py satisfying (3.6) and

o(r(P)) < p* (7.1)

and

E(f,P) < A*i”. (7.2)



It outputs an admissible partition P := MAIN (P, p, Ur(py) which is a refinement of P
and satisfies

O(r(P)) < /2 (7.3)
and L
E(f,P) < A"/2. (7.4)
Here A* is the constant appearing in REDUCE with y' := \/au and hence is assumed
to satisfy
. AL A
AT < —,— 0. .
_amln{A5,2A2} (7.5)

We now describe the steps in M AIN.

STEP1: Apply REDUCE with inputs r(P), p, and u' = v/au with « the constant in
COARSE, see (4.42) and with t,py used as the initial approzimation in any application
of GAL. The output P = REDUCE (r(P), 1, /o, Gr(py) s an admissible partition
which satisfies (6.18) and in particular ®(P') < au?.

STEP2: Apply COARSE with inputs P,P',n, and up := tu,p) (note that P’ is a
refinement of r(P) and therefore u,py is in Spr), and obtain the output

P = COARSE(P, u, u,py) which, on account of (4.67), satisfies
o — I < B (76)
STEP 3: Define P to be the common refinement of P and P.

STEP 4: Apply APPROX with input P and tolerance (A*/2)1/2,u and obtain as output
the partition P = APPROX(P, (A*/2)'/211) which satisfies E(f, P) < A*?/2.

Let us now check that the conclusions stated in MAIN are indeed valid. The condition
(7.4) is an obvious consequence of STEP 4 in MAIN. Furthermore, (7.5) enables the
application of REDUCE in STEP1. So it remains to verify (7.3). The desired bound
on & will follow again from Remark 6.1 whose applicability will hinge on the choice
of A* and of the parameter 8 which has yet to be fixed. By (7.5) and (7.4), we have
(Ay/245)p%/2 > A*1?/2 > E(f, P). Since P is a refinement of P, we have

Asllu = v, ) I” < Asllu — upp)I”* < AsB?, (7.7)

where we have used (7.6) in the last step. Thus whenever < 1/(2A45), Remark 6.1
applies and yields (7.3) (with P used for both P and P’). We impose this condition and
thereby specify the value of § as

B =1/(245). (7.8)

This in turn now allows the specification of a and v through our earlier requirements

(4.66) and (4.73).
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Proposition 7.1 There is a constant Cs such that the output P = MAIN(P, u,up)
satisfies 3 o

#(P) < Cs#(P) + Com(P|P) (7.9)
where m(P|P) is the number of markings used in creating P from P. (Here Cy is the
constant of (2.16).) Also, the number of flops N(MAIN, P, i, u,(p)) used in computing
P is bounded by the right side of (7.9) times a constant C(p) that depends only on the
mazximum of the ratios p = A'/§ where A" measures the accuracy of the initial guess in
each call of GAL, see (3.6). In the case that f € A*(H ') and u € A°* = A*(H}(Q)), we
have the inequality

#(P) < #(P) + Cs5(s)(

Vs~V Yot (7.10)

and

N(MAIN, P, ui, 4p)) < Cs(p, s) {#(Po) + ( 1/8

1/3) —1/5} (7.11)

with Cs(p, s) a constant depending only on s and the mazimum of the ratios A'/d corre-
sponding to the accuracies of the initial quesses in the calls of GAL in REDUCE and
COARSE.

Proof: Since u/p' is fixed, (6.17) ensures that the output P’ of REDUCE in STEP1
of MAIN satisfies

#(P') < Cs#(P).

Of course, the number of elements in P is also bounded by this number since P C P’.
Since P is a common refinement of P and P, it also satisfies #(P) < C#(P). If m(P|P) is
the number of markings used in the creation of P from P in the application of APPROX
in STEP4, then by (2.16), we have

#(P) < #(Py) + Co(m(P|Py) + m(P|P)) < C4#(P) + Com(P|P). (7.12)

This proves (7.9). Moreover, by Remark 3.1 the number of flops required by the various
calls of GAL remains proportional to the cardinalities of the respective partitions times
a factor C'(p) that depends only on the accuracy quotients p = A’/d relating the output
accuracy to that of the initial guess. For each of the algorithms REDUCE, COARSE,
and APPROX, we have therefore shown that the number of computations is bounded
by the maximum cardinalities of the inputs and outputs of these algorithms times C/(p),
see (6.18), (6.9) and (4.68). Thus the right side of (7.9) multiplied by C(p) also provides
an upper bound for the number of computations used in M AIN.
Now suppose that f € A*(H~') and u € A*. By (4.69), we have

#(P) < #(Po) + Ca(s)||u] 4 =/ (7.13)

and so
#(P) < #(P) + Co(s)||ul| {2, (7.14)

When we now apply STEP4, we can use (4.34) to obtain the bound

m(P|P) < Cy(s)| I ", (7.15)
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Hence, using (2.16), we obtain

#(P) + Co(m(P|P))
#(P) + Cs(s)[jull 4/
where the last inequality uses (7.14) and (7.15). This gives (7.10). The proof of (7.11) is

similar but takes in addition the cost (4.68), (6.5) and (6.18) of determining approximate
Galerkin solutions in REDUCE and COARSE. o

Yoy (7.16)

8 An adaptive algorithm with coarsening

In this section, we shall formulate our adaptive algorithm for solving (1.1) and prove
the convergence properties of this algorithm. We shall call this algorithm ALG. We
recall the numerical approximation ®(P) of ®(P) which is computed through the aid of
the numerical approximation 4p to up. Regarding the constraints on the accuracy of this
approximation reflected by the parameter ¢ in (3.7), note that ¢ < v/« implies the validity
of both conditions in (4.66) and (4.73) on 6. Thus we fix

6% = min {,0/(4B,)}. (8.1)

so that, in particular, By6* < 1/4. If u is the input tolerance in GAL, then from (6.7),
we have

|®(P) — &(P)| < B8 p?. (8.2)

ALG (¢, Py) — (P,up): This algorithm takes as input a desired tolerance € > 0 and an
initial partition Py and outputs a partition P which satisfies

d(P) < £%/4, (8.3)

(and hence, by (5.5), |u —up|| < €/2), and it outputs a numerical approzimation up to
up which satisfies
lu —ipll < & (8.4)

by using the following steps:
(I): (Initialization) For the initial partition Py, we take t,p,) := 0 as the initial approz-
imation of up(py) and p = 1 as the tolerance in GAL. We let i,(p,) := GAL(r(F),1,0)
be the output of GAL for these inputs. We compute ®(r(Py)) using U, (py) and we further
compute E(f, Py). We define

e2 .= max {®(r(By)) + 1/4, E(f, By)/A*}. (8.5)
We therefore have
E(f, Ry) < A (8.6)
and by (8.2) and (8.1) R
d(r(Py)) < ®(r(Py)) +1/4 < £2. (8.7)
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If g9 < /2 we stop and output P :=r(PFy) and Up = U,(p,)- If not, let n be the smallest
integer such that 2 "2 < €2 /4 and proceed to STEP 1II.

(II): Fork =0,1,... ,n—l, we apply MAIN with inputs Py, and €y, satisfying ®(r(Py)) <
e2 and E(f,P,) < A*e2, to obtain the partition Py, = MAIN(Pk,sk,ﬁr(pk)). In the
application of MAIN, we use as an initial guess U,p,) = Ur(p,) when k = 0, and
Ur(p,) = Ur(p,_,) when k > 0, since the latter function has already been computed in
the application of REDUCE in MAIN at the previous stage. By (7.3) and (7.4) we
know that ®(r(Pyri1)) < €2/2, E(f, Pey1) < A%e2/2.

(IIT): Define P = r(P,), and compute ip := GAL(P, €, Uy p,_,))-

The following is the main result of this paper.

Theorem 8.1 For any function f € Ly(Q) and any € > 0, ALG produces a partition P
for which
Ju—upl* < ®(P) < /4 (8.8)

and
lu—ap) <e (8.9)

If s >0 andu € A%, and f € A, then
#(P) < C(s)(#(P)

with C(s) > 0 a constant depending only on s, ||ul|m1(q), and the initial partition P.

Moreover, The number of computations used in producing P does not exceed C(s)(#(FPo)+
1/8 1/8) 71/8.

Y )1 (8.10)

Proof: The conclusion (8.8) follows immediately from the stopping criterion and the
initialization (I). To show (8.9), we estimate

lu —dpll < llu —upll + flup —dpl < /2 + e <e (8.11)

because 6 < 1/2 (see (8.1)).

We now turn to bounding the number of elements in P and the number of operations
used in the algorithm in terms of the target accuracy . To begin with, let us identify
next the constants A’ entering the estimate for the initial guesses in the various calls of
GAL. In step (I) we have %,(p,) = 0 so that

lu = T I* = alu,u) = (f,u) < llullm @l flla-20) < ' lullllfllz-1

so that in this case A’ < o'l fllm-1(0)

At the kth stage of step (II) GAL is invoked several times by NMMMS in REDUCE
and by COARSE. Each time #,p,) = t,(p,) is used as an initial guess. In view of the
accuracy tolerance of 1i,(p, ,) chosen in the first call of NMMNS used in REDUCE, we
have

v = trenll < llu = el + ey =ty

< O(r(Ppn))? + 5\/14&561@—1 <V?2 <1 + 4&145> Ek-
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In fact, the tightest accuracy tolerance used by GAL in REDUCE, or in COARSE
is ex\/a/v/As. The same argument applies for Step III. Thus in all cases the ratio p =
A'/6 is uniformly bounded. By Proposition 7.1 the computational cost of GAL remains
proportional to the cardinality of the respective partition.

To verify now (8.10), suppose that s > 0 and u € A*, and f € A°. Let n be the final
value of & when the algorithm stops, i.e., P = r(P,). To start out with, we note first that
g0 < C max {1, [|ul| g (), || flla)} In fact, if gy is given by the second term on the right
hand side of (8.5) we infer from (4.15) that eg < C||f]|z,). When the first term on the
right hand side of (8.5) dominates we dlstlngmsh two cases. If E(f, Py)/A* < ®(r(Py)) w
conclude from (6.1), (6.2) and (8.2) that 50— 1/2 = ®(r(Py))—1/4 < ®(r(By)) < A5|||u|||2
The other case E(f, Py)/A* > ®(r(Py)) > €2 —1/2 also leads to the bound claimed above.
Subsequent e, will satisfy this same bound. From (7.16) we know that for k = 1,2,...,n
we have

#(Prsr) = #(Pe) < Cs(s)(lulldrey ™ + 1£1 5 e ). (8.12)
Since by definition e, > £2(*~1=%)/2 we have
n—1
#(P,) = #(Po) + Z(#(PIH-I) — #(Pr)) < #(P) + f o)e ; 1/2s (flw l/s + ||f||1/s) e,

k=0

and since P = r(P,), we have #(P) < C#(P,) which proves (8.10).
To bound the number of computations used in ALG, we know from (7.11) that the
number of computations Ny used in computing Py, k = 1,...,n, is bounded by

£) e (8.13)

1/s

Ny < C5(s) (#(B)

since, according to our initial comments, the quotient p is uniformly bounded and therefore
the computational cost of each call of GAL remains proportional to the corresponding
partition size. Similarly, the number of computations used in computing F, is bounded
by a constant multiple of #(Fy). Thus the total number of computations does not exceed

n

1/s+|| ||1/5)) Z(ak)fl/s < C(s)(#(P)

k=0

C(s)(#(Py) Wl )e e (8.14)

©

9 Appendix

Recall from (4.7) and (4.17) that the classes A*(H'(2)) and A*(H~(Q)) are determined
through the nonlinear approximation properties of their elements. For instance, the ele-
ments in A*(H'(Q2)) can be approximated in H'(f2) to accuracy € on admissible partitions
with the order of £ /¢ cells. Obviously not all of these elements can be approximated
on uniform partitions with the same accuracy. In this section we wish to explain (with-
out proofs) which properties make a function belong to A*(H'(Q2)), say. This amounts
to relating the above approximation classes to regularity. The following results about
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the behavior of o, (u), defined by (4.3), are in principle known. They invoke the Besov
smoothness of functions. We refer the reader to any of the standard treatments of Besov
spaces (e.g.[21, 1, 8]) for the definition of the Besov spaces B;(L(f2)) and only remark
here that such a space is a smoothness space consisting of functions with smoothness order
s (number of derivatives) measured in L,. For example Bj(Ls) is identical with H* and
B$ (L,) is a Lipschitz space in L, whenever s is not an integer. The role of ¢ is secondary
and only serves to give a fine grading of the spaces important in many applications such
as embedding theorems.
The results about o,,, defined by (4.3), can be formulated as follows.

Theorem 9.1 Ifu € B*Y(L.(Q)) with0<a <1 and1/7 < (a+1)/2, then

on(u) = inf inf JJu— S| < C’on*a/2||u||Bg+1(LT)),
€Pn SESP

atl
2

where the constant Cy depends on the discrepancy § := % when § tends to zero.

A few brief comments on the range of the involved parameters are in order.

Remark 9.2 The restriction on o arises because we are approzimating in H' using piece-
wise linears and so o +1 < 2. Thus in two spatial dimensions N~'/2 is the highest at-
tainable order in the class B%(L,)) with 7' < 1. The restriction on T arises from the
Sobolev embedding theorem. It guarantees that the Besov space is embedded compactly in
H'. When 77 > (a + 1)/2, this Besov space is no longer embedded in H".

The above regularity assumptions are only sufficient for u to belong to A%*/2, say. The
following tnverse theorem shows that, although this is not a complete characterization, it
is sharp in the following sense.

Theorem 9.3 If u € H'(Q) satisfies 0,(u) < Cn=*/% then u € BS*Y(L,) for all T
satisfying 77! = (o + 1) /2.

The proofs of Theorems 9.1, 9.3 can be found in [3]. For related results see [14].

Finally, as a consequence of known results on the metric entropy of unit balls of Besov
classes, the order of Besov smoothness limits the approximation order in the following
sense.

Theorem 9.4 For each 0 < a <1 and 7! < (a+1)/2 we have

sup on(u) > CN—*/2 (9.1)
FeU(BFT (L (9)))

with C > 0 an absolute constant. (Here U(X) denotes the unit ball of a normed space
X).

The above results should be read as follows. First note that for fixed # the smoothness
measure given by the space B?(L,)) becomes weaker when 7 decreases. Theorem 9.1 says
that for fixed « the loss of regularity incurred by decreasing 7 towards the critical value
2/(a+1) can be compensated by nonlinear approzimation so as to retain the order N —a/2
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of approximation in H'. Theorem 9.4 says that this order is best possible with respect
to the full unit ball in the respective Besov class. To obtain the same approximation
order through spaces on (quasi-) uniform meshes is equivalent to u belonging in the much
smaller space B%"(Ly) (which is close to H**1).

Thus whenever the solution v has sufficient regularity measured in L, the best pos-
sible balance of accuracy versus the number of degrees of freedom can be obtained at
least asymptotically by using quasi-uniform meshes. Nonlinear approximation provides
asymptotically better rates whenever u has a higher regularity in L, for 7 < 2. Theorem
8.1 combined with Theorem 9.1 then say that this better rate is actually recovered by
the above adaptive algorithm which is a special instance of a nonlinear process. It has
recently been shown in [10, 9] that, depending on the smoothness of the domain €, the
solution to Poisson’s equation indeed has typically higher Besov than Sobolev regularity
in the sense that

o :=sup{a:u€ B*L,), 7 = (a+1)/2} > B :=sup{B:u € BE(Ly)}.

Hence in those cases the use of the adaptive scheme gives a better asymptotic work /accuracy
rate.

Acknowledgement: We are very indebted to P. Morin and R. Nochetto for valuable
comments and for pointing out to us an erroneous argument in an earlier version of this

paper.
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